Learning Strategies for Open-Domain Natural Language Question Answering

نویسندگان

  • Eugene Grois
  • David C. Wilkins
چکیده

This work presents a model for learning inference procedures for story comprehension through inductive generalization and reinforcement learning, based on classified examples. The learned inference procedures (or strategies) are represented as of sequences of transformation rules. The approach is compared to three prior systems, and experimental results are presented demonstrating the efficacy of the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Knowledge Graphs for Question Answering through Conversational Dialog

We describe how a question-answering system can learn about its domain from conversational dialogs. Our system learns to relate concepts in science questions to propositions in a fact corpus, stores new concepts and relations in a knowledge graph (KG), and uses the graph to solve questions. We are the first to acquire knowledge for question-answering from open, natural language dialogs without ...

متن کامل

Towards Literate Artificial Intelligence

Standardized tests are often used to test students as they progress in the formal education system. These tests are widely available and measurable with clear evaluation procedures and metrics. Hence, these can serve as good tests for AI. We propose approaches for solving some of these tests. We broadly categorize these tests into two categories: open domain question answering tests such as rea...

متن کامل

SSL-QA: Analysis of Semi-Supervised Learning for Question- Answering

Open domain natural language question answering (QA) is a process of automatically finding answers to questions searching collections of text files. Question answering (QA) is a long-standing challenge in NLP, and the community has introduced several paradigms and datasets for the task over the past few years. These patterns differ from each other in the type of questions and answers and the si...

متن کامل

Web-Based Unsupervised Learning for Query Formulation in Question Answering

Converting questions to effective queries is crucial to open-domain question answering systems. In this paper, we present a web-based unsupervised learning approach for transforming a given natural-language question to an effective query. The method involves querying a search engine for Web passages that contain the answer to the question, extracting patterns that characterize fine-grained clas...

متن کامل

Natural Language Processing in Watson

Open domain Question Answering (QA) is a long standing research problem. Recently, IBM took on this challenge in the context of the Jeopardy! game. Jeopardy! is a wellknown TV quiz show that has been airing on television in the United States for more than 25 years. It pits three human contestants against one another in a competition that requires answering rich natural language questions over a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005